
d0note 0000 V0.1 9/28/01

 1

BCJet reconstruction framework
Author: O. Peters

Introduction
The bcjet reconstruction tags reconstructed jets as light or heavy, i.e. produced by b- or c-quarks. To
achieve this goal, it uses multiple tagging algorithms, such as lepton and vertex tagging algorithms, as well
as combinations of these tagging algorithms. It consists of a framework that handles the data streams, and
the actual tagging algorithms that are called by the framework. This document describes the
implementation of the framework, and the requirements on the implementation of the tagging algorithms.
The first chapter will give an overview of how to run the code, starting from a reconstructed data file.
Chapter two deals with the implementation of the framework, and chapter three explains the requirements
on the tagging algorithms. Chapter four describes the way the analysis package reads the correct output of
the bcjet reconstruction.

Chapter 1: Running bcjet reconstruction
The input for the bcjet reconstruction consists of one or more reconstructed JetChunks, as well as one or
more chunks that are needed for the tagging algorithms. In this chapter, the muon tagging algorithm is used
as an example. This tagger needs a MuonParticleChunk as input.
To call the reconstruction, it is necessary to add a call to bcjetreco on the ‘Packages’ line in the RCP file
that steers the main program:

Furthermore, the OBJECTS and LIBRARIES files in the bin directory of the package that is providing the
binary have to contain some (additional) lines:
OBJECTS needs: RegbcJetReco
LIBRARIES needs: bcjetreco
After ‘gmake’, the binary is ready to run with the bcjet reconstruction added. An example of such a binary
can be found in the bcjet_analyze package.

As shown, the bcjetreco package is steered by the bcJetReco RCP file. This RCP file is shown in Listing 2.
The bcJetReco package is a ‘Controller’ – to do the processing of the event, it calls other packages (just

string Packages = “read geom ... bcjetreco analyze”

RCP bcjetreco = <bcjetreco bcJetReco>

Listing 1: Lines to be changed in the program-steering RCP file

string PackageName = "Controller"

string Packages = "init mutag etag vtxtag imptag nntag finish"

RCP init = <bcjetreco bcJetInit>
RCP finish = <bcjetreco bcJetFinish>
RCP mutag = <bc_muTagreco bc_muTagreco>
RCP etag = <bc_eTagreco bc_eTagreco>
RCP vtxtag = <bc_vtxTagreco bc_vtxTagreco>
RCP imptag = <bc_impTagreco bc_impTagreco>
RCP liketag = <bc_likeTagreco bc_likeTagReco>
RCP nntag = <bc_nnTagreco bc_nnTagreco>

Listing 2: the bcJetReco RCP file

d0note 0000 V0.1 9/28/01

 2

like the d0 framework). The packages that it calls are listed on the ‘Packages’ line. This line has to start
with a call to the bcJetInit package, and finish with a call to the bcJetFinish package. In between, the
tagging algorithms are called. To select different tagging algorithms, one can add or remove them from this
line. Thus, to run only with the muon tagging algorithm, we have to remove the entries etag, vtxtag, imptag
and nntag from the ‘Packages’ line in Listing 2.

The bcJetInit package selects which JetChunk will be used in the tagging algorithms. This selection is
steered by the bcJetInit RCP file, as shown in Listing 3.

Each JetChunk is created using a certain clustering algorithm, which is determined in the JetReco RCP file.
To select the JetChunk that is created by that JetReco RCP for tagging in the bcjet framework, the
clustering algorithms mentioned in the JetReco and bcJetInit RCP files have to be the same. If the
requested JetChunk is not present in the event, bcJetInit will print out an error message and the rest of the
bcjetreco stream is skipped.

The way each tagging algorithm behaves is governed by the parameters in its RCP file. Thus, to change this
behavior, these RCP files have to be edited according to the rules of that tagging algorithm.

The final package in the bcJetReco packages line, bcJetFinish, inserts the final reconstructed bcJetChunk in
the event. This bcJetChunk is the input to the bcjet_analyze package. To select the bcJetChunk that is
created by above bcJetReco RCP file, the bcJetAnalyze RCP file needs to have the correct settings (see
Listing 4)

The line ‘RCP bcjetreco = <bcjetreco bcJetReco>’ tells bcJetAnalyze to use that RCP file to select the
bcJetChunk. Thus, to select the bcJetChunk which is made with the above bcJetReco RCP file, this RCP
entry has to be exactly the same as the one in Listing 1.

string PackageName = "bcJetInit"

RCP ClusterAlgorithm = <calreco CalCone07>

Listing 3: the bcJetInit RCP file

Warning: When the bcJetReco.rcp file is not in your local RCP database, but the one in the official
database is used (i.e. bcjetreco/rcp/bcJetReco.rcp does not exist in your local area), all the RCP files
called in bcJetReco.rcp will be taken from the official database. Editing these latter RCP files in your
local area will have no effect on the running of the program.
To solve this, simply copy the bcJetReco RCP file from the release to bcjetreco/rcp/bcJetReco.rcp

string PackageName = "bcJetAnalyze"
...
RCP bcjetreco = <bcjetreco bcJetReco>

Listing 4: the bcJetAnalyze RCP file

d0note 0000 V0.1 9/28/01

 3

Event

JetChunk

Figure 1: the input event, containg a single
JetChunk and MuonParticleChunk

MuonParticleChunk

Chapter 2: Framework implementation
One of the requirements of the bcjet reconstruction framework is that it is capable of running multiple
bcjetreco streams1 in the same reconstruction job. This calls for a system that keeps track of all the chunks
involved in selecting the correct JetChunk, the chunks that are inserted by the tagging algorithms and the
bcJetChunk itself, and this in a manner that is transparent to the user and tagging algorithm developer. To
explain this system in detail, first a single bcjetreco stream is considered that takes the only JetChunk in the
event and creates the corresponding bcJetChunk. Only the muon tagging algorithm is considered here,
but all other tagging algorithms work in a similar way.

Figure 1 shows the input event with the required chunks:
the chunk holding the reconstructed Jets and the chunk
holding the reconstructed muons. Listing 5 shows the
minimum RCP file that is needed to run an executable (e.g.
bcJetAnalyze) that reconstructs bcJets and analyses them.
It reads in the event with the ReadEvent package and
initializes the geometry with the geometry_management
package. Since all the reconstructed objects are already
available in the event, we can proceed now with the bcjet
reconstruction. The RCP file needed for this reconstruction
is shown in Listing 6.

The bcjet reconstruction takes three steps:
1. Initialization: chooses the JetChunk to run on, and prepare the event such that consequent tagging

algorithms and bcJetFinish can find this JetChunk;
2. Tagging: runs one or more tagging algorithms, which use the JetChunk that is chosen in the

previous initialization step, and physics information already present in the event to store tagging
information in the event;

3. Finalizing: creates the bcJetChunk and fills it with bcJets, which hold references to the tagging
information created by the tagging algorithms.

These steps are explained in detail below.

1 A bcjetreco stream is the consecutive execution of the list of packages listed in the bcJetReco RCP file.
Such a stream selects a JetChunk, calls the tagging algorithms and inserts a bcJetChunk in the event.

string Packages = “read geom bcjetreco bcjetanalyze”

RCP read = <io_packages ReadEvent>
RCP geom = <geometry_management geometry_management>
RCP bcjetreco = <bcjetreco bcJetReco>
RCP bcjetanalyze = <bcjet analyze bcJetAnalyze>

Listing 5: Minimal program steering RCP file to reconstruct and analyze bcjets

string PackageName = "Controller"

string Packages = "init mutag finish"

RCP init = <bcjetreco bcJetInit>
RCP finish = <bcjetreco bcJetFinish>
RCP mutag = <bc_muTagreco bc_muTagreco>

Listing 6: the minimal bcJetReco RCP file, running only the muon tagging algorithm

d0note 0000 V0.1 9/28/01

 4

2.1: Initialization
The initialization of the bcjet reconstruction is done by the bcJetInit object (package bcjetreco). It is steered
by the bcJetInit RCP file, which is shown in Listing 7.

To select the correct JetChunk in the event, the ‘ClusterAlgorithm’ RCP entry has to point to the same RCP
file that is pointed to in the JetReco RCP file used to create the JetChunk. With this ‘ClusterAlgorithm’
RCP file, the bcJetInit object creates a JetChunkSelector and stores it in a bcJetInitChunk. Using this
JetChunkSelector, the correct JetChunk can always be retrieved from the event. After the initialization, the
event looks like is shown in Figure 2.

2.2: Tagging
After the initialization stage, the tagging algorithms are run. These need at least the correct JetChunk as
input, which they retrieve using a function in the EventUtilities class, called getJetChunk(Event) (explained
later).

In most cases, the tagging algorithms also need additional chunks, e.g. a MuonParticleChunk for the muon
tagging algorithm. It is the responsibility of the tagging algorithm to retrieve this information out of the
event – the framework does not provide means to do this.
Using the jet and additional information, the tagging algorithm can now tag each jet, and insert information
about this tag in the event. Each tag holds information about the jet tagged and about the physics object
tagging it. These tags are collected in a tagChunk, which for the muon tagging algorithm is a muTagChunk.
Both the tag and the tagChunk need to adhere to some restrictions, which are explained in detail in chapter
3. After the tagging algorithm has run, the event looks like is shown in Figure 3.

string PackageName = "bcJetInit"

RCP ClusterAlgorithm = <calreco CalCone07>

Listing 7: the bcJetInit RCP file

Warning: Tagging algorithms should not extract the JetChunk out of the event themselves as this does
not guarantee that the correct JetChunk is used. Instead, the EventUtilities::getJetChunk(Event)
method has to be used

Event

JetChunk

Figure 2: the event, after inserting the bcJetInitChunk. This chunk allows the correct JetChunk to be
selected

MuonParticleChunk

bcJetInitChunk

d0note 0000 V0.1 9/28/01

2.3: Finalization
After all tagging algorithms have run, the bcJetFinish object will gather the information stored in the
tagChunks and insert the bcJetChunk. It retrieves the correct JetChunk through the
EventUtilities::getJetChunk(Event) method, just like the tagging algorithms. To get the tagChunks that
tagged that particular JetChunk, it calls another utility function in EventUtilities, called
getTagChunk(Event). This function returns the tagChunk that has been tagging the JetChunk selected in the
stream, and is explained later.

Event

JetChunk

Figure 3: the event, after running the muon tagging algorithm, which inserted the muTagChunk. Since this
chunk stores information about both the JetChunk and MuonParticleChunk, it depends on both

MuonParticleChunk

bcJetInitChunk

muTagChunk
Warning: The only proper way to retrieve the tagChunks that are tagging the JetChunk used in the
bcjetreco stream is through the EventUtilities::getTagChunk(Event) function. Accessing the event
directly might cause the wrong tagChunk to be selected.
 5

After retrieving the necessary chunks, the bcJetFinish object takes the following steps:

1. The ChunkID of each input chunk, in this case the JetChunk and MuTagChunk, are stored in a
temporary list for later insertion in the bcJetChunk;

2. The bcJetChunk is created, with the list of ChunkID’s as one of the arguments;
3. For each input chunk, the first RCPID in the RCP list of the chunk is stored in the bcJetChunk. In

most cases, this RCPID will point to the RCP used for the tagging algorithm2. These RCPID’s are
stored in a map<string, RCPID> in the bcJetChunk, where the first argument is the name of the
package that created the chunk, e.g for the muTagChunk, this is bc_muTagreco. Also, the RCPID
of the bcJetReco RCP file is stored, since this is needed later in for example bcjet_analyze to
retrieve the correct bcJetChunk from the event.

4. For each Jet in the chosen JetChunk, a bcJet is created and each tagChunk is asked to provide a list
of all tags that have tagged that Jet. However, instead of returning a copy of the tag, the tagChunks
return a LinkIndex to the tag, which can be seen as a pointer to that tag. The LinkIndices to the
tags are then stored in the bcJet.

5. Finally, the bcJets are stored in the bcJetChunk, and the bcJetChunk is inserted in the event.
After the last step, the event looks like Figure 4, and is ready for analysis.

2 Since the input chunks only have a list of RCPID’s, without any description, it is not possible to know for
sure that the first RCPID points to the algorithm RCP file.

d0note 0000 V0.1 9/28/01

 6

2.4 Running multiple streams
The previous paragraph described how to run the bcjet reconstruction once in a reconstruction job.
However, sometimes it is desired to run the bcjet reconstruction multiple times, for example to run on
different JetChunks and/or use different variables in the tagging algorithms. This paragraph will explain

how the framework implements this situation, and as
an example we use an event with two different
reconstructed JetChunks and two different
reconstructed MuonParticleChunks as input (see
Figure 5). Also, the muon tagging algorithm is run
with different options.

The minimal main RCP file for the above situation is
shown in Listing 8. In this RCP file, the bcjetreco
package is called twice, each time with a different
RCP file. Also, the bcjet_analyze package is called
twice with a different RCP file. To use a different
JetChunk and MuonParticleChunk, as well as to use
different tagging algorithms in the two bcjetreco
streams, the two different bcjetreco RCP files will
have to call different RCP files for the packages in the
stream. This can be seen in Listings 9 and 10.

Event

JetChunk

Figure 4: the event, after finalizing. The bcJetChunk is created using information of the JetChunk and the
tagging chunk, in this case the muTagChunk

MuonParticleChunk

bcJetInitChunk

bcJetChunk

muTagChunk

Figure5: the input event with two differently
reconstructed JetChunks and two
MuonParticleChunks, each also reconstructed
with a different reconstruction algorithm

Event

JetChunk
0.5 Cone

MuonParticleChunk
Linked List

JetChunk
0.7 Cone

MuonParticleChunk
Combinatorial

string Packages = “read geom bcjetreco1 bcjetreco2 bcjetanalyze1
bcjetanalyze2”

RCP read = <io_packages ReadEvent>
RCP geom = <geometry_management geometry_management>
RCP bcjetreco1 = <bcjetreco bcJetReco1>
RCP bcjetreco2 = <bcjetreco bcJetReco2>
RCP bcjetanalyze1 = <bcjet_analyze bcJetAnalyze1>
RCP bcjetanalyze2 = <bcjet_analyze bcJetAnalyze2>

Listing 8: Minimal program steering RCP file to run two bcjetreco streams, including analysis

d0note 0000 V0.1 9/28/01

 7

To be able to select different JetChunks in the different bcJetInit_Cone0x RCP files, the line
RCP ClusterAlgorithm = <calreco CalCone07>
in those RCP files needs to be pointing to the correct calorimeter clustering algorithm that was used to
make the JetChunk.

The two instances of the muon tagging algorithm in the different bcjetreco streams are steered by the two
different bc_muTagreco RCP files. These RCP files are shown in Listing 11 and 12. The muon tagging
algorithm retrieves the correct JetChunk through the EventUtilities object, but it has to make sure itself that
it retrieves the correct MuonParticleChunk based on the information in the bc_muTagreco RCP file – the
framework cannot do this3. After retrieving both correct chunks from the event, the algorithms can tag the
jets using the muons and insert a muTagChunk in the event. Since the muon tagging algorithm is run twice,
it will insert two muTagChunks in the event, both tagging a different JetChunk with different muons. These
two muTagChunks can later be distinguished only by the fact that they store the ChunkID of the chunks
that were used to create the muTagChunk, thus, the ChunkID of the JetChunk and of the muTagChunk.

3 At the time of the write-up of this document, the MuonParticleChunk did not store information about the
algorithm that was used to create it. Thus, the muon tagging algorithm cannot distinguish between the
different MuonParticleChunks in an event, based on a ‘algorithm’ switch in the bc_muTagreco RCP file. If
this information is put in the MuonParticleChunk, above scenario can become true.

string PackageName = "Controller"

string Packages = "init mutag finish"

RCP init = <bcjetreco bcJetInit_Cone05>
RCP finish = <bcjetreco bcJetFinish>
RCP mutag = <bc_muTagreco bc_muTagreco_LL>

Listing 9: the RCP file for the bcjetreco1 stream, calling the bcJetInit RCP file that will select the 0.5
cone JetChunk, and the bc_muTagreco RCP file that will use the ‘Linked List’ MuonParticleChunk

string PackageName = “Controller”

string Packages = “init mutag finish”

RCP init = <bcjetreco bcJetInit_Cone07>
RCP finish = <bcjetreco bcJetFinish>
RCP mutag = <bc_muTagreco bc_muTagreco_Combi>

Listing 10: the RCP file for the bcjetreco2 stream, calling the bcJetInit RCP file that will select the 0.7
cone JetChunk, and the bc_muTagreco RCP file that will use the ‘Combinatorial’ MuonParticleChunk

string PackageName=”muTagReco”

string MuonRecoAlgorithm = “LinkedList”
string TaggingAlgorithm = “Default”

RCP DefaultMuTagAlgRCP = <bc_muTagreco DefaultMuTagAlg>
RCP NNMuTagAlgRCP = <bc_muTagreco NNMuTagAlg>

Listing 11: the muTagReco RCP file, retrieving the MuonParticle chunk reconstructed with the
LinkedList algorithm, and using the default tagging algorithm to tag the jets

d0note 0000 V0.1 9/28/01

 8

After the tagging algorithms have inserted the tagChunks, the bcJetFinish objects in both streams create
and insert the bcJetChunks. Using the bcJetUtilities::getJetChunk(Event) and
bcJetUtilities::getTagChunk(Event) functions to retrieve the correct input chunks, the LinkIndices to the
correct tags are taken out of the tagChunks and inserted in the new bcJets. After all jets have been made
into bcJets, the bcJetChunk is inserted in the event. After this, the event looks like it is depicted in Figure 6.

Event

JetChunk
0.5 Cone

bcJetInit
Chunk

JetChunk
0.7 Cone

MuonParticleChunk
Linked List

bcJetInit
Chunk

MuonParticleChunk
Combinatorial

muTagChunk bcJetChunk muTagChunkbcJetChunk

Figure6: the event after insertion of the tagging chunks and the bcJetChunks. Note, that all chunks on the
left of the dashed line are inserted first, before the chunks on the ride side of the dashed line are inserted.

string PackageName="muTagReco"

string MuonRecoAlgorithm = “Combinatorial”
string TaggingAlgorithm = "NN"

RCP DefaultMuTagAlgRCP = <bc_muTagreco DefaultMuTagAlg>
RCP NNMuTagAlgRCP = <bc_muTagreco NNMuTagAlg>

Listing 12: the muTagReco RCP file, retrieving the MuonParticle chunk reconstructed with the
Combinatorial algorithm, and using the neural net tagging algorithm to tag the jets

d0note 0000 V0.1 9/28/01

 9

To clarify the order in which the chunks are inserted in the event, a timeline of the packages run and the
chunks that are inserted is shown below:

The bcJetInitChunk inserted at time 0 is pointing to the JetChunk that is reconstructed with a 0.5 cone size.
This bcJetInitChunk is the latest (in time) in the event, and as such will be used for selection of the correct
JetChunk.

The muon tagging algorithm, using the LinkedList reconstruction algorithm and the default algorithm to
tag, creates and inserts the muTagChunk. The JetChunk used is given by the latest inserted bcJetInitChunk.

Using the JetChunk pointed to by the bcJetInitChunk inserted at time 0, the bcJetChunk is created, using
the information stored in the muTagChunk. Note, that not the latest muTagChunk is taken, but the
muTagChunk that is tagging the current JetChunk. This is the end of the first stream, and the second stream
now starts.

At time 3, a new bcJetInitChunk is created that points to the JetChunk reconstructed with a 0.7 cone
algorithm. This is not the latest bcJetInitChunk in the event, and consequently will be used for selecting the
correct JetChunk.

The muon tagging algorithm now uses this bcJetInitChunk to retrieve and tag the 0.7 cone reconstructed
JetChunk, using the combinatorial muon reconstruction and a neural network tagging algorithm.

Time: 1 muTagReco (LL +
default)

muTagChunk

Time: 2 bcJetFinish bcJetChunk

Time: 3 BcJetInit_Cone07

bcJetInitChunk
(pointing to JetChunk with cone 0.7)

Time: 4 muTagReco
(Combi + NN)

muTagChunk

bcJetInit_Cone05Time: 0

TimeTimeTimeTime PackagePackagePackagePackage Chunk(s) insertedChunk(s) insertedChunk(s) insertedChunk(s) inserted

bcJetInitChunk
(pointing to JetChunk with cone 0.5)

d0note 0000 V0.1 9/28/01

 10

Finally, the bcJetFinish object uses the correct jetChunk pointed to by the bcJetInitChunk inserted at time 3
to create a new bcJetChunk. This bcJetChunk holds information of the muTagChunk inserted at time 4,
which was tagging the same JetChunk.

Each bcjetreco stream thus creates its own bcJetChunk. Since each of these bcJetChunks is created using a
different and unique bcJetReco RCP file, of which the RCPID is stored in the bcJetChunk, these chunks
can be told apart at a later stage.

2.5 Framework utitilities
To select the correct JetChunks and tagChunks out of the event, a singleton utility object is provided that
returns these chunks based on information already present in the event. There are two functions
implemented in this singleton: getJetChunk(Event) that returns the correct JetChunk, and
getTagChunk(Event) that returns the correct tagChunk. The inner workings of both are explained
below.

THandle<JetChunk> EventUtilities::getJetChunk(Event)
First, this function retrieves the latest bcJetInitChunk. This is done by taking out all bcJetInitChunks, and
comparing their generation time. The bcJetInitChunk with the highest generation time is selected. Since
this bcJetInitChunk contains a JetChunkSelector, this selector can be used to extract the correct JetChunk
from the event.

template<class TagChunk>
edm::THandle EventUtilities::getTagChunk(Event)
The template argument of this function is the type of tagChunk that is to be retrieved from the event. The
retrieval of the correct tagChunk is done by first getting the correct JetChunk from the event using the
previous function. Then, all tagChunks (of the template type) are extracted from the event. Since each of
these tagChunks contains the ChunkID of the JetChunk that was used to create the tagChunk, the
tagChunks that do not contain the ChunkID of the correct JetChunk are discarded. Then, the generation
time of all leftover tagChunks are compared, and the tagChunk with the highest generation time is returned.

Using any other function than these two will not guarantee that the correct JetChunks and tagChunks are
extracted from the event!

2.6 BCJet data components
The data from the bcjet reconstruction is stored in the bcJetChunk, which is a collection of bcJets. Both of
these components will be explained in some detail below.

bcJetbcJetbcJetbcJet
The bcJet component is a Jet with added information about the tags that are tagging this jet. Therefore, the
bcJet inherits from Jet and adds an interface to manipulate these tags. The bcJet does not store the tags
directly, since this would mean that the tags are stored twice, once in a tagChunk and once in the bcJet.
Instead, the bcJet stores collections of LinkIndices4 that point to the tags. Using LinkIndices puts some
requirements on both the framework and the tagging chunks:

1. The LinkIndices are inserted in the bcJet in the bcJetFinish stage of the bcjetreco stream. The
correct LinkIndex to the tag has to be retrieved from the specific tagChunk. This has to be
implemented in each tagChunk by two functions: a function getTagIndex(Jet) that returns

4 For more information about LinkIndices, see: http://cdspecialproj.fnal.gov/d0/edm/Links.htm

Time: 5 bcJetFinish

bcJetChunk

d0note 0000 V0.1 9/28/01

 11

one LinkIndex to the tag in that tagChunk that is tagging the given Jet, and
getTagIndices(Jet, vector<TagIndex>) that fills a vector with LinkIndices to all the
tags found;

2. LinkIndices need to be resolved before they can be used. This is done in the function
completeLinks that is called from the bcJetChunk. This function loops over all the
LinkIndices in the bcJet and resolves them. It is called as soon as the bcJetChunk is retrieved from
the event.

In all other aspects, the bcJet can be treated as a regular Jet.

bcJetChunkbcJetChunkbcJetChunkbcJetChunk
The bcJetChunk inherits from the D0PhysObjChunk5 with bcJet as a template argument. The
D0PhysObjChunk makes sure that before any bcJet in the collection that it stores is accessed, it calls the
completeLinks function of all bcJets. This ensures all LinkIndices in the bcJets are resolved before
they are used. In addition to the functionality in D0PhysObjChunk, the bcJetChunk also stores a map of
RCPID’s, with their name as the key. In the bcJetFinish stage of the bcjetreco stream, this map is filled
with the RCPID’s of all the tagging algorithm RCP’s that inserted a tagChunk in the event.

2.7 Registration of framework packages
All packages that are used in the bcjet reconstruction stream need to be registered with the framework in
order to be instantiated during the initialization of the framework. This is normally done with a separate
‘Register’ object for each package, which is located in the /src directory of the package. For the bcjetreco
package, this is done in a different way, and only one Register object exists for all packages run in the
bcjetreco stream. Therefore, the Register object for bcjetreco, called RegbcJetReco, registers both the
bcJetInit and the bcJetFinish framework packages, as well as all the tagging packages.

5 See: http://www-d0.fnal.gov/d0dist/dist/releases/current/kinem/doc/README.TXT

d0note 0000 V0.1 9/28/01

 12

Chapter 3: Requirements on tagging algorithms
To be used in the bcjet reconstruction framework, a tagging algorithm has to consist of a minimum number
of classes, which are located in different packages. Each of these classes has to adhere to some interface.
This chapter will list all necessary components for a jet-tagging algorithm.

3.1 Tagging package
Each tagging algorithm has its own package, which is controlled by the author of the tagging algorithm and
the b-id group leader(s). The name of the package has to look like bc_xxTagreco, where xx is the short for
your tagging algorithm (e.g. for the muon tagging algorithm, the package name is bc_muTagreco). This
short should be 2-4 letters long.

3.2 Tag
The tag object is the smallest block of output from the tagging algorithm. All the tags used in the bcjet
reconstruction reside in the bcjet_evt package to avoid circular dependencies. A tag tags one jet using
physics information from the event. It therefore stores a LinkIndex to the jet, and one or more LinkIndices
to that physics information. Also, it should provide a useful interface to access the data in the tag. To
explain this interface, the muTag class will be used as an example, part of which is shown in Listing 13.

As can be seen from the first line, the muTag is part of the bcjetid namespace. All classes that are used in
the bcjet reconstruction have to be part of the bcjetid namespace to avoid naming conflicts. The class starts
of with two typedef’s for the information stored in the tag. Although this is not needed for the framework, it
does make coding a lot easier.
The tag contains two constructors: one with no arguments that is needed for storage in containers, and one
taking a JetLink and a MuonLink that initializes the private data members _jet and _muon. To retrieve the
Jet and MuonParticle objects, two accessors are implemented that resolve the LinkIndices and return the
objects that the LinkIndices point to. The implementation of these functions will be explained in more
detail below. Since these LinkIndices need to be resolved before these functions can be called, an activate()
method needs to be implemented that is called by the tagChunk in which this tag is stored (also explained
below). Finally, the tag also provides functions to access some of the variables that were used in the

namespace bcjetid {
class muTag {
public:
typedef edm::LinkIndex<Jet> JetLink;
typedef edm::LinkIndex<MuonParticle> MuonLink;

muTag();
muTag(const JetLink &jet, const MuonLink &muon);

const jetid::Jet &jet() const;
const muonid::MuonParticle &muon() const;

void activate(edm::AbsChunk *chunk) const;

double getPtRel() const;
double getMuonP() const;
void setPtRel(const double &ptrel);
double getDiscriminant() const;

private:
JetLink _jet;
MuonLink _muon;

double _ptrel;
};
inline double muTag::getPtRel() const { return _ptrel; }
inline double muTag::getMuonP() const { return muon().p(); }
inline void muTag::setPtRel(const double &ptrel) { _ptrel = ptrel; }

} // namespace bcjetid

Listing 13: part of the muTag header file, showing some of the needed interface for a tag.

d0note 0000 V0.1 9/28/01

 13

tagging algorithm, in this case the PTRel between the muon and the jet, and the momentum of the muon. It is
not necessary to store all this information in the tag, since it can be recalculated using the information in the
jet and the muon. In the case of the muTag, only the PTRel is stored, and the momentum of the muon is
taken by calling a function of the MuonParticle object. Note, that the PTRel could have been recalculated
too using the information in the jet and the muon. Finally, a function is added to retrieve the discriminant of
the tag, which is a number between 0 and 1 indicating the likelihood that this jet is a b-jet.

Listing 14 shows the implementation of the jet() function, that returns the Jet object that is pointed to by the
JetIndex in the tag.

The function first creates a LinkPtr to the jet, using the JetLink contained in the tag. After checking if this
is a valid pointer, the object pointed to by this pointer is returned.
This system only works when the LinkIndex has been resolved. This is done in the activate() method,
shown in listing 15.

The activate() method is called by the tagChunk when it is accessed or read from the event, and resolves all
LinkIndices in the tag.

3.3 TagChunk
Except for the normal functions that are implemented for a chunk storing physics data6, there are a couple
of functions that need to be implemented specifically for the bcjetreco framework (note that examples from
the muTagChunk are used; some of the names of the functions and objects should therefore be changed).

MuTagIndex getMuTagIndex(const jetid::Jet &jet) const
Given a certain jet, the tagChunk has to return a LinkIndex to the tag that is tagging that jet. The
implementation of such a function is shown in Listing 16. Here, the function loops over all the tags in the
chunk and compares the jet that is stored in each tag with the jet provided. If both jets are the same,
meaning that the tag is tagging that particular jet, a LinkIndex is created using the tag object, the ChunkID
of the tagChunk and the position of the tag in the chunk (starting at 0!).

6 See for example http://www-d0.fnal.gov/d0dist/dist/releases/current/bcjet_evt/bcjet_evt/muTagChunk.hpp

void muTag::activate(edm::AbsChunk *chunk) const {
edm::finishUpLink(_jet, chunk);
edm::finishUpLink(_muon, chunk);

 }

Listing 15: implementation of the activate() function.

Warning: the activate() method has to resolve all LinkIndices in the tag. If this is not done, it will
leave the tag in a corrupt state

const jetid::Jet &muTag::jet() const {
edm::LinkPtr jetptr(_jet);
if(!jetptr.isValid()) {

errlog(Elerror, “Invalid JetLink in muTag”) << endmsg;
}
assert(jetptr.isValid());
return *jetptr;

}

Listing 14: implementation of the jet() function.

d0note 0000 V0.1 9/28/01

 14

void getMuTagIndices (const jetid::Jet &jet, vector<MuTagLink> &tags)
const
Given a certain jet, fill the vector ‘tags’ with LinkIndices to all tags that are tagging the jet.

const muTag &at(int index) const
Given a certain index, the tagChunk has to return the tag that is stored at that index. This function is used to
resolve the LinkIndices that are pointing to tags stored in this chunk. An implementation of the at()
function is shown in Listing 17. It is a good idea to have the assert statements in the function to make sure
that no invalid object is returned.

void activate()
This function is called when the tagChunk is read from the event, before any other function can be called
on that chunk. Therefore, it is a good place to resolve all the links stored in the tags. The implementation of
this function is shown in Listing 18, which demonstrates a simple loop over all the tags in the chunk and
calling the function activate() on each of them.

MuTagIndex muTagChunk::getMuTagIndex(const jetid::Jet &jet) const {
int position = 0;
for(muTagCollection::const_iterator tag_iter = _tags.begin();

tag_iter != _tags.end();
++tag_iter) {

if(tag_iter->jet() == jet) return MuTagIndex(*tag_iter,
chunkID(), position);

++position;
}

// Return an invalid LinkIndex
return MuTagIndex((const muTag *)0, chunkID(), position);

}

Listing 16: implementation of thegetMuTagIndex() function.

const muTag &muTagChunk::at(int index) const {
assert(index > -1 && index < size());
return _tags[index];

}

Listing 17: implementation of the at() function.

void muTagChunk::activate() {
for(muTagCollection::const_iterator iter = begin();

iter != end();
++iter) {

iter->activate(this);
}

}

Listing 18: implementation of the activate() function.

d0note 0000 V0.1 9/28/01

 15

3.4 Tagging algorithm
The tagging algorithm resides in the bc_xxTagreco package. This package should contain at least one class
that inherits from the fwk::Process and fwk::Package class and can thus be registered with the framework7.
The most important function in this class is the processEvent method, which contains the follwing steps:

1. Extraction of the JetChunk using the EventUtilities::getJetChunk(Event) method;
2. Extraction of the physics information chunks needed for the tagging information (optional);
3. Loop over all jets in the JetChunk;
4. If a jet is tagged by the physics information, create a new tag with a JetLink and a LinkIndex to

the specific physics information. Note, that the correct position of the jet in the chunk, and the
correct position of the physics information in the physics chunk has to be stored in these
LinkIndices. This is very important; if this is not done correctly, the event will be left in an
unstable state but will not crash immediately!

5. Create a new tagChunk and insert all the created tags in it;
6. Add the ChunkID’s of the JetChunk and all the other chunks that were used in the event;
7. Store the RCPID of the tagging algorithm’s RCP file in the tagChunk and make sure that this

RCPID is the first one in the chunk (i.e. rcps().front() is pointing to the RCPID of the tagging
algorithm’s RCPID)

8. Insert the new tagChunk in the event

3.5 Changes in the bcjetreco framework
Unfortunately, registering the new tagging algorithm requires code changes in some of the components of
the bcjetreco framework. The following components and functions are affected:

bcjet_evt/bcJet.hpp

• Include the header defining the new tag;
• Add a private vector of LinkIndices to the new tag;
• Add two add functions, one taking a LinkIndex to the new tag, the other taking the tag, the

ChunkID of the chunk in which the tag resides, and the position of the tag in that chunk;
• Add a get function which fills a vector of LinkIndices to the current tag.

bcjetreco/bcJetFinish.cpp

• Include the header defining the new tagChunk;
• Add the following pieces of code to the processEvent method in the correct places, thereby

changing the names from ‘muon’ to your tag name:

7 See: http://www-d0.fnal.gov/d0dist/dist/releases/current/bc_muTagreco/bc_muTagreco/muTagReco.hpp

LinkIndex jetlink(*jet_iter, jetchunk->chunkID(), jetposition);
LinkIndex muonlink(*muon, muonchunk->chunkID(), muonposition);
muTag mutag(jetlink, muonlink);

Listing 18: implementation of the activate() function.

Warning: the bcJet is a persistent object, and as soon as the new tag is added to it, the new tag
becomes persistent too. Be aware that changing variables in persistent objects from release to release
can cause huge compatibility problems! Thus, make sure that all variables in the new tag are useful,
valid and will not change in the foreseeable future

// Extract the muon tagging chunk
THandle muonchunk = EventUtilities::getTagChunk(event);
if(muonchunk.isValid()) parents.push_back(muonchunk->chunkID());
// ...
if(muonchunk.isValid()) bcjetchunk->addRCPID("bc_muTagreco", muonchunk-
>rcps().front());

d0note 0000 V0.1 9/28/01

 16

bcjetreco/RegbcJetReco.cpp
• Add a framework forward declaration to your tagger, similar to the ones present. Make sure the

declaration is in the same namespace as the one in which your tagger is located!

That is all. Now test the new code extensively using a plethora of data samples, Monte Carlo and real data.
To analyze the code, a new block has to be added in the bcjet_analyze package, but a description of that is
outside the scope of this document.

3.6 Writing higher level tagging algorithms
A higher level tagging algorithm is an algorithm that uses the output of the other tagging algorithms to
make a new tagging decision. Examples of currently higher level tagging algorithms are the likelihood
tagging algorithm and the neural net tagging algorithm. These algorithms have to run in the bcjetreco
stream after all the other tagging algorithms that are used. To access the lower level tagChunks, the
algorithm has to use the EventUtilities::getTagChunk(Event) function to make sure that those tagChunks
are used that are tagging the current JetChunk. To get the tag in the tagChunk that is tagging a certain jet,
the getTagIndex(Jet) function of the tagChunk can be used, with the caveat that the LinkIndex to the tag
has to be de-referenced using the LinkPtr mechanism (see Listing 14 on page 12). Apart from this, the rest
of the implementation is the same as for the lower level tagging algorithms.

Chapter 4: Using bcjet_analyze with multiple streams
This chapter will not give an overview of bcjet_analyze8, but will explain how to run bcjet_analyze with
multiple bcjetreco streams, and how to select the correct bcJetChunk to analyze.
Each bcjetreco stream creates one new bcJetChunk, and for each bcJetChunk that has to be analyzed, a
separate instance of the bcjet_analyze package has to be run (see for example Listing 8 on page 6). The
selection of the correct bcJetChunk is made in the bcJetAnalyze RCP file. Here, there is a line:

RCP bcjetreco = <bcjetreco bcJetReco1>

This line tells bcJetAnalyze which bcjetreco stream is creating the bcJetChunk that it will analyze.
Therefore, in the example of Listing 8, if we tell bcJetAnalyze to use the bcJetReco1 RCP file, it will select
the bcJetChunk that is created by the first bcjetreco stream. Thus, to analyze both bcJetChunks that are
made in the two streams, the bcJetAnalyze1 RCP file has to have the entry:

RCP bcjetreco = <bcjetreco bcJetReco1>

while the bcJetAnalyze2 RCP file has to have the entry

RCP bcjetreco = <bcjetreco bcJetReco2>

8 For that, see http://www-d0.fnal.gov/d0dist/dist/releases/current/bcjet_analyze/doc/

if(muonchunk.isValid()) {
MuTagIndex mutag = muonchunk->getMuTagIndex(*jet_iter);
if(0 != mutag.getPointer()) {

if(tagiter->index() >= muonchunk->size()) {
_errlog(ELwarning, "Invalid index to muTag returned by muTagChunk") <<
"index: " << tagiter->index() << ", chunksize: " << muonchunk->size() << endmsg;
} else {
bcjet.addMuTag(mutag);
}

}
};

	BCJet reconstruction framework
	
	Author: O. Peters

	Introduction
	Chapter 1: Running bcjet reconstruction
	Chapter 2: Framework implementation
	2.1: Initialization
	The initialization of the bcjet reconstruction is done by the bcJetInit object (package bcjetreco). It is steered by the bcJetInit RCP file, which is shown in Listing 7.
	2.2: Tagging
	2.3: Finalization
	2.4 Running multiple streams
	2.5 Framework utitilities
	
	THandle<JetChunk> EventUtilities::getJetChunk(Event)
	template<class TagChunk>
	edm::THandle EventUtilities::getTagChunk(Event)

	2.6 BCJet data components
	
	
	bcJet
	bcJetChunk

	2.7 Registration of framework packages

	Chapter 3: Requirements on tagging algorithms
	3.1 Tagging package
	3.2 Tag
	3.3 TagChunk
	
	MuTagIndex getMuTagIndex(const jetid::Jet &jet) const
	void getMuTagIndices (const jetid::Jet &jet, vector<MuTagLink> &tags) const
	const muTag &at(int index) const
	void activate()

	3.4 Tagging algorithm
	3.5 Changes in the bcjetreco framework
	
	bcjet_evt/bcJet.hpp
	bcjetreco/bcJetFinish.cpp
	bcjetreco/RegbcJetReco.cpp

	3.6 Writing higher level tagging algorithms

	Chapter 4: Using bcjet_analyze with multiple streams

